SYNTHESIS OF (±) – 9 – OXOEUDESMA – 4, 11 (13) – DIENE – $7\alpha H$ – 12 – OIC ACID METHYL ESTER

Xin Chen, Tongshuang Li, Fajun Nan, Sichang Shao¹ and Yulin Li*

State Key Laboratory of Applied Organic Chemistry and Institute of Organic Chemistry, Lanzhou University, Lanzhou 730000, P R China

(Received in Japan 20 January 1993)

Key Words $(\pm) - 9$ -oxoeudesma - 4, 11 (13) - diene- $7\alpha H - 12$ - oic acid methyl ester, synthesis, Ene-type chlorination

Abstract: The first synthesis of $(\pm) - 9$ – oxoeudesma – 4, 11 (13) – diene – $7\alpha H$ – 12– oic acid methyl ester (1) has been described, employing the Ene-type chlorination with hydrogen peroxide / Vilsmeier reagent system as the key step

In recent years, a large number of eudesmane acids and eudesmane lactones have been isolated from natural sources² These natural products have aroused much interest on account of their wide spectrum of biological properties, particularly antifeedant, cell growth inhibitory and plant growth regulating activities^{2,3}

(-)-9-Oxoeudesma-4,11(13)-diene-7 α H-12-oic acid, (+)-9 β -hydroxyeudesma-4,11(13)diene-7 α H-12-oic acid and (+)-9 β -acetoxyeudesma-4,11(13)-diene-7 α H- 12-oic acid have been isolated as the corresponding methyl esters 1, 2 and 3 from Artemisia tournefortiana ⁴ The transformation of 1 to 2 and 3 has also been reported by Sanz et al ⁴ Herein we describe the first synthesis of 1 in racemic form (Scheme 1) The key step of this synthetic route is the Ene-type chlorination with hydrogen peroxide / Vilsmeier reagent system

Eudesma-4,11(13)-diene- $7\alpha H$ - 3,9-dione (4) was prepared easily from (-)-carvone in three steps ⁵ After all attempts were made unsuccessfully to obtain directly allylic alcohol 7 (or allylic aldehyde 8) by allylic oxidation (SeO₂, CrO₃, PDC, PCC) of 4, we turned our attention to the Ene-type chlorination ⁶ Employing hydrogen peroxide / Vilsmeier reagent system, 4 was converted to allylic chloride 5 in 64% yield Compound 5 was transformed (NaI, Me₂CO) to reactive

10dide 6, which without purification was hydrolyzed (Cu₂O, DMSO, H₂O) to allylic alcohol 7

Reagents and conditions a) Vilsmeier reagent, 30% H₂O₂, CH₂Cl₂, -20%, 20 mm, b) NaI, Me₂CO, rt, 3h, c) Cu₂O, DMSO, H₂O, 60\%, 2h, d) Jones reagent, Me₂CO, rt, 10 min, e) MnO₂, NaCN, AcOH, MeOH, rt, 14h, f) 1, 3-propanedithiol, 8% FeCl₃ on silica gel, CH₂Cl₂, rt, 30 min, g) W-2 Raney Ni, EtOH, rt, 1h

An alternative procedure for preparation of 7 was also investigated (Scheme 2) epoxidation of 4 quantitatively afforded epoxide 11 and rearrangement of the latter with LDA⁷ gave 7 in 24% yield This route was rejected due to the very poor yield of the rearrangement

a) m-CPBA, CHCl₃, rt, 20h, b) LDA, ether, rt, 6h

Oxidation of 7 with Jones reagent generated allylic aldehyde 8 The overall yield of three steps from 5 to 8 was 81% The conversion of 8 to methyl ester 9 was carried out by Corey method,⁸ which involved treatment of 8 with active manganese dioxide, sodium cyanide and ace-

tic acid in dry methanol at room temperature for 14h

The final phase of the synthesis (Scheme 1) was concerned with reduction of the α,β -unsaturated ketone 9 to the corresponding olefin On treatment with an equivalent amount of 1, 3-propanedithiol in the presence of 8% anhydrous ferric chloride dispersed on silica gel,⁹ the unsaturated carbonyl group of 9 was thicketalized quickly to afford thicketal 10 Desulfurization of 10 with freshly prepared W-2 Raney nickel in ethanol at room temperature furnished the title compound 1 in a yield of 72%, whose spectral properties were identical with the reported data ⁴

The formation of allylic chloride 5 indicates that the Ene-type chlorination of keto-olefins with hydrogen peroxide / Vilsmeier reagent system may provide an efficient synthetic procedure to other natural eudesmane acids (esters)

The conversion of 1 to the related eudesmane lactones⁴ is in progress

EXPERIMENTAL

For column chromatography, 200–300 mesh silica gel and 60–90°C petroleum ether (PE) were used Elemental analyses were performed on an Italian 1106 analyzer IR spectra were recorded on a Nicolet FT-170SX as liquid films ¹H NMR spectra were measured on a Varian FT-80A and a Bruker AM-400 spectrometers (TMS, CDCl₃) Mass spectra were determined on a V G ZAB-HS spectrometer(EI, 70 ev)

12-Chloroeudesma-4, 11(13)-diene-7aH-3,9-dione (5)

To a well-sturred mixture of 4 (2 0 g, 8 6 mmol) and 30% H₂O₂ (56 mL) was added dropwise the Vilsmeier reagent⁶ (86 mmol) in CH₂Cl₂(30 mL) in 15 min at -20°C under argon, and the mixture was further stirred at the same temperature for 20 min The two-phase reaction solution was separated, and the aqueous phase was extracted with CH₂Cl₂(2 × 30 mL) The combined organic fractions were washed with H₂O (2 × 20 mL), 10% aq Na₂SO₃(20 mL) and brine (20 mL), and dried over anhydrous MgSO₄ The crude products were purified by silica gel chromatography eluting with PE ether (3 1) to afford 5 (1 46g, 64% yield) as a light-yellow oil v_{max} 1707, 1663 (C=O) cm⁻¹, $\delta_{\rm H}$ (80 MHz) 1 43 (s, 3H, C₁₀-CH₃), 1 87 (s, 3H, C₄-CH₃), 4 13 (br s, 2H, 12-H), 5 15, 5 34 (2 br s, 2H, 13-H), m/z (%) 268(M⁺+2,12), 266(M⁺,36),253(12),231(20), 226(46), 175(100) Anal Calcd for C₁₅H₁₉O₂Cl C, 67 54, H, 7 18% Found C,67 07, H, 7 60%

12-Hydroxyeudesma-4, 11(13)-diene-7aH-3, 9-dione (7)

Method A A mixture of 5 (1 35g, 5 1 mmol) in acetone (50 mL) and sodium iodide (0 92g, 6 1 mmol) was stirred at room temperature for 3 h The solvent was removed at reduced pressure, and the residue was dissolved in $CH_2Cl_2(30 \text{ mL})$ After filtering, the filtrate was evaporated to give 6 (1 79g, 98%) as an oil which was used in the succeeding step without purification

The crude 10dide (1 79g)was dissolved in DMSO (25 mL) and water (50 mL), and to this was added Cu₂O (1 22 g, 8 5 mmol) The suspension was stirred and heated at 60°C for 2 h After filtering, the solution was extracted with ether (3 × 30 mL), and the etheral extracts were washed with water (2 × 15 mL) and brine (2 × 10 mL), dried (MgSO₄),and chromatographed using PE ether (1 1) to produce 7 (1 11 g, 88%) as an almost colorless oil v_{max} 3416 (br, OH), 1707, 1662 (C=O) cm⁻¹, $\delta_{\rm H}(80$ MHz) 1 44 (s, 3H, C₁₀-CH₃), 1 86 (s, 3H, C₄-CH₃), 4 20 (br s, 2H, 12-H), 5 04, 5 21 (2 br s, 2H, 13-H), m / z(%) 248(M⁺, 100), 233(65), 230(82), 183(51) Anal Calcd for C₁₅H₂₀O₃ C, 72 55, H, 8 12% Found C, 72 71, H, 8 30%

Method B To a stirred solution of 4 (1 10g, 4 74 mmol) in dry CHCl₃(60 mL) was added 75% m-CPBA (1 10 g, 4 80 mmol) in one portion The mixture was stirred at room temperature under Ar for 20 h, resulting a yellow solution The solution was washed successively with 10% aq Na₂SO₃(2 × 20 mL), 10% aq NaOH (2 × 20 mL), water (3 × 15 mL) and brine (20 mL), and dried with anhydrous MgSO₄ Removal of the solvent gave a mixture of epimeric epoxides 11 (1 14 g) as a yellow oil which was sufficiently pure for the next step reaction v_{max} 1709, 1663 (C=O) cm⁻¹, $\delta_{\rm H}(80 \text{ MHz})$ 1.35(br s, 3H, C₁₁-CH₃), 1 44 (s, 3H, C₁₀-CH₃), 1 85 (s, 3H, C₄-CH₃), m/z (%)248(M⁺, 87), 233(60), 197(100), 183(63)

To a freshly prepared solution of LDA (23 mmol) in dry ether (30 mL) at 0°C, under Ar, was added dropwise a solution of the crude epoxide mixture 11 (1 14g, about 4 6 mmol) in dry ether (15 mL), and the reaction mixture was stirred at room temperature for 6 h The reaction was quenched by addition of 5% aq HCl (5 mL), and the mixture was stirred for an additional 15 min The orgame layer was separated, and the aqueous portion was extracted with ether (3 × 10 mL) The combined organic phases were washed with water (2 × 20 mL) and brine (20 mL), and dried over anhydrous MgSO₄ Chromatographic purification (PE ether = 1 1) afforded 7 (0 27g, 24%)

Eudesma-4, 11(13)-diene-7aH-3, 9,12-trione (8)

7 (0 95g, 3 83 mmol) was dissolved in permanganate stable acetone (20 mL), and 8N Jones reagent (0 8 mL, 6 4 mmol) was added dropwise with stirring The resulting light-green mixture was stirred at room temperature for 10 min After usual work-up, 8 (0 86g, 92%) was obtained as a colorless oil v_{max} 1711 (C=O), 1690 (CHO), 1667 (C=O) cm⁻¹, $\delta_{\rm H}$ (80 MHz) 1 46 (s, 3H, C₁₀-CH₃), 1 85 (s, 3H, C₄-CH₃), 6 15, 6 36 (2 br s, 2H, 13-H), 9 60 (s, 1H, CHO), m / z (%) 246(M⁺, 50), 231(46), 203(60), 189(33), 157(100) Anal Calcd for C₁₅H₁₈O₃ C, 73 15, H, 7 37% Found C, 73 28, H, 7 40%

3,9-Dioxoeudesma-4,11(13)-diene- 7α H-12-oic acid methyl ester (9)

A mixture of 8 (0 78 g, 3 2 mmol) in dry MeOH (80 mL) and active $MnO_2(3 4 g, 39 mmol)$

٠

and NaCN (0 49 g, 10 mmol) in the presence of dry acetic acid (0 2 mL) was stirred at room temperature for 14 h After filtering through celite, the filtrate was evaporated to dryness, and the residue was dissolved in CH₂Cl₂(60 mL), washed with water (2×15 mL) and brine (2×10 mL), and dried (Na₂SO₄) Chromatography using PE ether (5 1) as eluent gave 9 (0 61 g, 70%) as a viscous oil v_{max} 1714 (CO₂Me), 1710, 1668 (C=O) cm⁻¹, $\delta_{\rm H}(80$ MHz) 1 45 (s, 3H, C₁₀-CH₃), 1 86 (s, 3H, C₄-CH₃), 3 80 (s, 3H, CO₂Me), 5 68, 6 33 (2 br s, 2H,13-H), m/z(%) 276(M⁺, 100), 261(29), 244(46), 234(41), 187(37) Anal Calcd for C₁₆H₂₀O₄ C, 69 55, H, 7 29% Found C, 69 30, H, 7 35%

3, 3–Trimethylenedithio–9–oxoeudesma – 4, 11(13) –diene – $7\alpha H$ –12 –oic acid methyl ester (10)

To a stirred solution of 9 (0 5g, 1 8 mmol) in dry CH₂Cl₂(20 mL) and 1,3-propanedithiol (0 21g, 1 9 mmol) was added 8% FeCl₃ dispersed on silica gel (0 5g, 0 24 mmol FeCl₃) in one portion The resulting brown suspension was stirred at room temperature for 30 min, and the reaction was quenched by addition of 10% aq NaOH (1 mL) After filtering through celite, the organic phase was separated, and the aqueous layer was extracted with CH₂Cl₂(2 × 10 mL) After drying (Na₂SO₄), the crude products were purified on silica gel chromatography eluting with PE ether (6 1) to afford 10 (0 49g, 75%) as a viscous oil v_{max} 1712 (CO₂Me), 1709 (C=O) cm⁻¹, $\delta_{\rm H}$ (400 MHz) 1 34 (s, 3H, C₁₀-CH₃), 2 04 (s, 3H, C₄-CH₃), 3 79 (s, 3H, CO₂Me), 5 63, 6 27 (2 br s, 2H, 13-H), m / z(%) 366 (M⁺, 72), 351(100), 292(40), 259(62), 229(60) Anal Calcd for C₁₉H₂₆O₃S₂ C, 62 26, H, 7 15% Found C, 62 40, H, 7 19%

(\pm) - 9 - Oxoeudesma - 4, 11(13)-diene-7 α H-12-oic acid methyl ester (1)

10 (0 2g, 0 55 mmol) was hydrogenated over freshly prepared W-2 Raney nickel (0 5g) in absolute EtOH (6 mL) at room temperature for 1 h Removal of the catalyst and solvent followed by chromatography using PE ether (8 1) gave 1 (0 1g, 72%) as a viscous oil v_{max} 1736 (CO₂Me), 1706 (C = O) cm⁻¹, $\delta_{\rm H}$ (400 MHz) 1 30 (s, 3H, C₁₀-CH₃), 1 71 (br s, 3H, C₄-CH₃), 3 81 (s, 3H, CO₂Me), 5 67, 6 27 (2 br s, 2H, 13-H), m / z(%) 262 (M⁺, 41), 247(55), 229(100), 220(38), 133(88)

Acknowledgement: This project was supported by the National Natural Science Foundation of China

REFERENCES AND NOTES

- 1 Visiting scholar from Department of Chemistry, Fuyang Normal College
- 2 (a) Jakupovic, J, Schuster, A, Bohlmann, F and Dillon, M O Phytochemistry 1988, 27, 1113

- (b) Jakupovic, J, Lehmann, L, Bohlmann, F, King, R M and Robinson, H Phytochemistry 1988, 27, 3831
- (c) Marco, J A., Sanz, J F and Hierro, P D Phytochemistry 1991, 30,2403.
- (d) Zdero, C; Bohlmann, F, Anderberg, A and King, R M Phytochemistry 1991, 30, 2643
- 3 (a) Van Beek, T A and De Grot, A *Recl Trav Chim Pays-Bas* 1986, 105, 513
 (b) Ando, M, Isogai, K, Azami, H, Hirata, N and Yanagi, Y J. Nat. Prod 1991, 54, 1017
- 4 (a) Rustaiyan, A, Bamonieri, A, Raffatrad, M, Jakupovic, J and Bohlmann, F Phytochemistry 1987, 26, 2307
 (b)Sanz, J F and Marco, J A Liebigs Ann Chem 1990, 541
- 5 (a) Li, Y L, Chen, X, Shao, S C and Li, T S Indian J Chem Sect B in press (b) Huffman, J W and Hillenbrand, G F Tetrahedron Suppl 9, 1981, 37, 269
- 6 Rodriguez, J and Dulcère, J P Synlett 1991, 477
- 7 Huffman, J W. and Raveendranath, P C Tetrahedron 1987, 43, 5557
- 8 Corey, E J, Gilman, N W and Ganem, B E J Am Chem Soc 1968, 90, 5616
- 9 Patney, H K. Tetrahedron Lett 1991, 32, 2259